Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172390, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608904

RESUMO

This review provides a comprehensive summary of the skin penetration pathways of xenobiotics, including metals, organic pollutants, and nanoparticles (NPs), with a particular focus on the methodologies employed to elucidate these penetration routes. The impacts of the physicochemical properties of exogenous substances and the properties of solvent carriers on the penetration efficiencies were discussed. Furthermore, the review outlines the steady-state and transient models for predicting the skin permeability of xenobiotics, emphasizing the models which enable realistic visualization of pharmaco-kinetic phenomena via detailed geometric representations of the skin microstructure, such as stratum corneum (SC) (bricks and mortar) and skin appendages (hair follicles and sebaceous gland units). Limitations of published research, gaps in current knowledge, and recommendations for future research are highlighted, providing insight for a better understanding of the skin penetration behavior of xenobiotics and associated health risks in practical application contexts.


Assuntos
Absorção Cutânea , Xenobióticos , Xenobióticos/farmacocinética , Humanos , Pele/metabolismo , Poluentes Ambientais/metabolismo , Nanopartículas , Modelos Biológicos , Permeabilidade
2.
Environ Sci Technol ; 58(1): 182-193, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38156633

RESUMO

Chlorinated polyfluorooctane ether sulfonate (6:2 Cl-PFESA), hydrogenated polyfluorooctane ether sulfonate (6:2 H-PFESA), and chlorinated polyfluorooctanesulfonate (Cl-PFOS) share structural similarities with the regulated perfluorooctanesulfonate (PFOS), but their toxic potential is rarely known. Here, the thyroid disrupting potential of these four compounds in zebrafish larvae has been comparably investigated. PFOS, Cl-PFOS, and 6:2 Cl-PFESA were accumulated in the larvae at similar levels, approximately 1.3-1.6 times higher than 6:2 H-PFESA. Additionally, PFOS, Cl-PFOS, and 6:2 Cl-PFESA exhibited stronger disruption than 6:2 H-PFESA on genetic regulation, particularly concerning thyroid hormone (TH) activation and action and on TH homeostasis in both free and total forms of thyroxine (T4) and 3,5,3'-triiodothyronine (T3). These results indicate that chlorination or oxygen insertion does not substantially alter the thyrotoxicity of PFOS, but hydrogenation mitigates it. Molecular docking analysis and the luciferase reporter gene assay provided mechanistic perspectives that the PFOS-like substances could competitively replace THs to bind with TH plasma and membrane transporters, thereby disrupting TH transport and action, respectively. Moreover, they are also potent to disrupt TH synthesis and activation through Na+/K+-dependent transport of I- or competitive binding to the sites of deiodinases.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Animais , Peixe-Zebra , Glândula Tireoide , Larva , Simulação de Acoplamento Molecular , Ácidos Alcanossulfônicos/toxicidade , Ácidos Alcanossulfônicos/química , Éteres , Fluorocarbonos/toxicidade
3.
Environ Sci Technol ; 57(39): 14515-14525, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37728733

RESUMO

The hepatotoxicities of perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been extensively investigated, while little is known about the sex-specific differences. In this study, common carp were exposed to the emerging perfluoroalkyl phosphinic acids (6:6 and 8:8 PFPiAs) for 14 days to disclose sex-specific hepatotoxicity. Apparent hepatotoxicity, including cell necrosis, apoptosis, and steatosis, was observed in both male and female carp liver. The observed hepatocyte steatosis was predominantly attributed to the dysregulation of hepatic lipid metabolism but was based on sex-specific mechanisms. It was manifested as inhibited oxidative decomposition of fatty acids (FAs) in the female liver, whereas it enhanced the uptake of FAs into the male liver, both of which led to excessive lipid accumulation. Untargeted lipidomics validated that the metabolism pathways of FA, sphingolipid, glycerolipid, and glycerophospholipid were disrupted by both compounds, leading to the generation of reactive oxygen species and oxidative stress. The oxidative stress further evolved into inflammation, manifested as promoted expression of proinflammatory cytokines and repressed expression of anti-inflammatory cytokines. Consistently, all of the changes were more noticeable in male carp, suggesting that male fish were more susceptible to PFPiA disruption. 8:8 PFPiA was less accumulated but caused stronger hepatotoxicity than 6:6 PFPiA, possibly because of the stronger binding capacity of 8:8 PFPiA to nuclear transcription factors mediating lipid metabolism and inflammation. The findings of this study highlight the significance of sex- and chemical-dependent bioaccumulation and the toxicity of PFASs in organisms.


Assuntos
Carpas , Doença Hepática Induzida por Substâncias e Drogas , Fluorocarbonos , Poluentes Químicos da Água , Masculino , Animais , Feminino , Ácidos Fosfínicos , Carpas/metabolismo , Citocinas , Inflamação , Fluorocarbonos/toxicidade , Poluentes Químicos da Água/metabolismo
4.
Environ Sci Technol ; 57(30): 11032-11042, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467139

RESUMO

As alternatives to traditional per- and polyfluoroalkyl substances, perfluoroalkyl phosphonic acids (PFPiAs) are widely present in aquatic environments and can potentially harm aquatic organisms. Pigmentation affects the probability of aquatic organisms being preyed on and serves as an important toxic endpoint of development, but little is known about the impacts of PFPiAs on the development of aquatic organisms. In this study, Xenopus laevis embryos were exposed to 6:6 PFPiA (1, 10, and 100 nM) for 14 days. The developed tadpoles exhibited evident pigmentation with increased melanin particle size and density on the skin. Pathological and behavioral experiments revealed that the retinal layers became thinner, reducing the photosensitivity and disturbing the circadian rhythm of the tadpoles. Compared to the control group, the exposed tadpoles showed higher levels but less changes of melanin throughout the light/dark cycle, as well as distinct oxidative damage. Consequently, the expression level of microphthalmia-associated transcription factor (MITF), a key factor inducing melanin synthesis, increased significantly. Molecular docking analysis suggested that 6:6 PFPiA forms strong interactions in the binding pocket of MITF, implying that it could activate MITF directly. The activation of MITF ultimately promotes melanin synthesis, resulting in pigmentation on tadpoles.


Assuntos
Fluorocarbonos , Melaninas , Melaninas/metabolismo , Ácidos Fosforosos , Simulação de Acoplamento Molecular , Pigmentação
5.
J Hazard Mater ; 448: 130896, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764254

RESUMO

As alternatives of long-chain PFASs (Poly- and perfluoroalkyl substances), perfluoroalkyl phosphinic acids (PFPiAs) are increasingly observed in the environment, but their environmental behaviors have not been well understood. Here, the microbial biotransformation of C6/C6 and C8/C8 PFPiA in two soils (Soil N and Y) was investigated. After 252 d and 330 d of incubation with PFPiAs in Soil N and Y respectively, the levels of PFPiAs decreased distinctly, accompanied by the increasing perfluorohexaphosphonic acid (PFHxPA) or perfluorooctanophosphonic acid (PFOPA) formation, magnifying PFPiAs were susceptible to C-P cleavage, which was also confirmed by the density functional theory calculations. The half-lives of the PFPiAs were longer than one year, while generally shorter in Soil N than in Soil Y and that of C6/C6 was shorter than C8/C8 PFPiA (392 d and 746 d in Soil N, and 603 and 1155 d in Soil Y, respectively). Metagenomic sequencing analysis revealed that Proteobacteria as the primary host of the potential functional genes related to CP bond cleavage might be the crucial phyla contributing to the biotransformation of PFPiAs. Meanwhile, the more intensive interactions between the microbes in Soil N consistently contribute to its greater capacity for transforming PFPiAs.


Assuntos
Fluorocarbonos , Ácidos Fosfínicos , Ácidos Fosfínicos/metabolismo , Solo , Meia-Vida , Biotransformação , Fluorocarbonos/análise
6.
J Hazard Mater ; 445: 130473, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36455325

RESUMO

With the stringent restrictions on long-chain per- and polyfluoroalkyl substances (PFASs), ether-PFASs are being widely used as alternatives. We estimated that the mega fluorochemical industrial park (FIP) in Shandong, China, had emitted a maximum of 5040 kg and 1026 kg of hexafluoropropylene oxides (HFPOs), and 7560 kg and 1890 kg of perfluorooctanoic acid (PFOA) to water and air during 2021. In the surface water, groundwater, outdoor dust, soil, tree leaf and bark collected in the vicinity of the FIP, PFOA was predominant, followed by HFPOs. The much higher percentage of HFPO dimer acid (HFPO-DA) in groundwater than in surface water verified that this compound was more mobile in porous media. The strong correlations between the main PFASs in outdoor dust and surface soil suggested that the soil PFASs were mainly derived from air deposition, particularly for HFPO trimer acid (HFPO-TA), which has a stronger binding affinity with particles than PFOA. High percentage of the hydroxylated product of 6:2 polyfluorinated ether sulfonic acid was observed in groundwater, implying reductive dechlorination might occur in groundwater. Strong correlations between PFASs in outdoor dust and those in tree leaf and bark magnified that tree could serve as a sampler to effectively monitor airborne PFASs. This study provides the first line of information about the discharge, transport, and fate of novel ether-PFASs in the multiple environmental media near a point source.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Água , Fluorocarbonos/análise , Éteres , China , Etil-Éteres , Poeira
7.
Environ Sci Technol ; 56(23): 16975-16984, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36419387

RESUMO

Humans are frequently exposed to poly- and perfluoroalkyl substances (PFASs) via direct skin contact with personal care and consumer products containing them. Here, we used a rat model to estimate the dermal penetration efficiency of 15 representative PFASs. After 144 h post-dosing, 4.1-18.0 and 5.3-15.1% of the applied PFASs in the low (L) and high (H) groups, respectively, were absorbed into the rats. PFAS absorption and permeation were parabolically associated with the perfluorinated carbon chain length (CF), peaking for perfluoroheptanoic acid (PFHpA). The lipid-rich stratum corneum of the skin barrier substantially suppressed the penetration of less hydrophobic short-chain PFASs, whereas the water-rich viable epidermis and dermis served as obstacles to hydrophobic long-chain PFAS permeation. However, the renal clearance (CLrenal) of the target PFAS decreased with increasing CF, suggesting that urinary excretion is crucial to eliminate less hydrophobic short-chain PFASs. Notably, the peak times of PFASs in the systemic circulation of rats (8-72 h) were remarkably longer than those after oral administration (1-24 h). These results suggest that dermal penetration can be long-lasting and contribute considerably to the body burden of PFASs, especially for those with moderate hydrophobicity due to their favorable skin permeation and unfavorable urinary excretion.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Humanos , Ratos , Animais , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Pele , Água
8.
Environ Sci Technol ; 56(6): 3613-3622, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35195405

RESUMO

Food is a major source of human exposure to per- and polyfluoroalkyl substances (PFASs), yet little is known about their bioavailability in food matrices. Here, the relative bioavailability (RBA) of PFASs in foods was determined using an in vivo mouse model. Pork, which had the highest lipid content, exhibited the greatest effect on bioavailability by increasing the RBAs of perfluoroalkyl acids (PFAAs) while reducing those of fluorotelomer phosphate diesters (diPAPs). During intestinal digestion of lipids, the bioaccessibility of PFAAs increased due to their greater partition into the stable mixed micelles. However, diPAPs were more likely to partition into the undigested oil phase due to their strong hydrophobicity. Both in vitro incubation and molecular docking results indicated that the PFAAs exhibited stronger binding affinities with mouse blood chylomicrons (CMs) than with diPAPs. Collectively, both lipid digestion in the intestine and the carrier effect of CMs played important roles in modulating the bioavailability of PFASs in food. More attention should be given to further evaluating the health risks of PFASs associated with the intake of high-lipid foods.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Animais , Disponibilidade Biológica , Fluorocarbonos/análise , Lipídeos , Camundongos , Simulação de Acoplamento Molecular , Poluentes Químicos da Água/química
9.
Environ Sci Technol ; 56(2): 907-916, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34978445

RESUMO

The microbial transformation potential of 6:2 chlorinated polyfluorooctane ether sulfonate (6:2 Cl-PFESA) was explored in anaerobic microbial systems. Microbial communities from anaerobic wastewater sludge, an anaerobic digester, and anaerobic dechlorinating cultures enriched from aquifer materials reductively dechlorinated 6:2 Cl-PFESA to 6:2 hydrogen-substituted polyfluorooctane ether sulfonate (6:2 H-PFESA), which was identified as the sole metabolite by non-target analysis. Rapid and complete reductive dechlorination of 6:2 Cl-PFESA was achieved by the anaerobic dechlorinating cultures. The microbial community of the anaerobic dechlorinating cultures was impacted by 6:2 Cl-PFESA exposure. Organohalide-respiring bacteria originally present in the anaerobic dechlorinating cultures, including Geobacter, Dehalobacter, and Dehalococcoides, decreased in relative abundance over time. As the relative abundance of organohalide-respiring bacteria decreased, the rates of 6:2 Cl-PFESA dechlorination decreased, suggesting that the most likely mechanism for reductive dechlorination of 6:2 Cl-PFESA was co-metabolism rather than organohalide respiration. Reductive defluorination of 6:2 Cl-PFESA was not observed. Furthermore, 6:2 H-PFESA exhibited 5.5 times lower sorption affinity to the suspended biosolids than 6:2 Cl-PFESA, with the prospect of increased mobility in the environment. These results show the susceptibility of 6:2 Cl-PFESA to microbially mediated reductive dechlorination and the likely persistence of the product, 6:2 H-PFESA, in anaerobic environments.


Assuntos
Chloroflexi , Anaerobiose , Biodegradação Ambiental , Chloroflexi/metabolismo , Éter/metabolismo , Éteres/metabolismo
10.
Environ Sci Technol ; 56(10): 6123-6132, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33947185

RESUMO

6:2 chlorinated polyfluorooctane ether sulfonate (6:2 Cl-PFESA) was previously shown to undergo limited dechlorination in rainbow trout to yield 6:2 hydrogen-substituted polyfluorooctane ether sulfonate (6:2 H-PFESA) as the sole metabolite. However, the biotransformation susceptibility of 6:2 Cl-PFESA has not been investigated in mammals and the biological behavior of 6:2 H-PFESA has not been defined in any species. We investigated the respective transformation products of 6:2 Cl-PFESA and 6:2 H-PFESA and their toxicokinetic properties in male Sprague-Dawley rats as a mammalian model. 6:2 H-PFESA was the sole detectable metabolite of 6:2 Cl-PFESA, with a transformation percentage of 13.6% in rat liver, but it resisted further degradation. 6:2 Cl-PFESA also transformed to 6:2 H-PFESA in reductive rat liver S9 incubations but remained stable under oxidative conditions, suggesting a reductive enzyme-dependent transformation pathway. 6:2 Cl-PFESA was more enriched in lipid-rich tissues, while 6:2 H-PFESA was more prone to cumulative urinary excretion. From this perspective, it may suggest a detoxification mechanism for organisms to form the less hydrophobic 6:2 H-PFESA to alleviate total burdens. To date, 6:2 Cl-PFESA was the second perfluoroalkyl acid reported to undergo biotransformation in mammals. The toxicokinetic properties determined for 6:2 Cl-PFESA and 6:2 H-PFESA in blood and urine were found to be structure and dose dependent.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Alcanossulfonatos , Animais , Éter , Éteres/metabolismo , Fluorocarbonos/toxicidade , Hidrogênio , Masculino , Mamíferos/metabolismo , Ratos , Ratos Sprague-Dawley , Toxicocinética
11.
Environ Int ; 151: 106451, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33647835

RESUMO

Polyfluoroalkyl phosphate esters (PAPs) are high production volume surfactants used in the food contact paper and packaging industries. They are prone to partition to soil due to their strong hydrophobicity and may biotransform into recalcitrant perfluoroalkyl carboxylic acids (PFCAs); little is known about their fate and behaviors in terrestrial organisms. Here, geophagous earthworms (M. guillelmi) were exposed to 6:2 fluorotelomer phosphate diester (6:2 diPAP)-contaminated soil to examine tissue-specific accumulation and biotransformation. 6:2 diPAP quickly accumulated in M. guillelmi with the highest biota-soil-accumulation factor (BSAF) in the gut, followed by the organs, skin, and body fluid. The total amount of 6:2 diPAP accumulated in the skin was the highest due to its high mass content. These results indicated that skin absorption and gut processes were two major pathways for earthworms to accumulate 6:2 diPAP from soil. In vitro desorption experiments indicated that the gut digestion fluid greatly promoted the desorption of 6:2 diPAP from the soil and enhanced its bioavailability. Degradation of 6:2 diPAP in the soil was stimulated when the earthworm appeared. In contrast to the soil, a more extensive transformation occurred in the earthworm. Perfluorohexanoic acid (PFHxA) was the primary phase Ⅰ product, followed by perfluoropentyl propanoic acid (FPePA), perfluoropentanoic acid (PFPeA), 2-perfluorohexyl ethanoic acid (FHEA), and perfluoroheptanoic acid (PFHpA), which confirmed the occurrence of α- and ß-oxidation in earthworms. For the first time, a new phase II product, namely, a 6:2 fluorotelomer alcohol sulfate conjugate, was identified in earthworms at unexpectedly high levels, which might be the primary way earthworms eliminate 6:2 diPAP. Both in vivo and in vitro experiments suggested that 6:2 diPAP experienced faster and more extensive biotransformation in the gut than in the organs. This work sheds light on the bioaccumulation and biotransformation of 6:2 diPAP in terrestrial invertebrates, providing strong evidence of indirect sources of PFCAs in the environment.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Biotransformação , Organofosfatos/toxicidade , Fosfatos/análise , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
12.
Environ Sci Technol ; 54(8): 4932-4941, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32202099

RESUMO

This study investigated the tissue-specific accumulation and biotransformation of 6:6 and 8:8 perfluoroalkyl phosphinic acids (PFPiA) in common carp (Cyprinus carpio) during 90 d exposure and 30 d depuration in water in the laboratory. Both 6:6 and 8:8 PFPiAs could quickly accumulate in the carp, and 6:6 PFPiA displayed higher bioaccumulation potential than 8:8 PFPiA. The highest concentrations of PFPiAs were observed in the blood, while the lowest were found in the muscle. The equilibrium dialysis experiment indicated that both PFPiAs had higher binding affinities with the proteins in the fish serum than in liver, which was supported by the molecular docking analysis. The results also indicated that 6:6 PFPiA had higher binding affinities with the serum and liver proteins than 8:8 PFPiA. These results suggested that the tissue-specific distribution of PFPiAs was highly dependent on the binding affinities with the specific proteins. Both in vivo and in vitro experiments consistently indicated that PFPiAs experienced biotransformation and produced perfluoroalkyl phosphonic acids (PFPAs), and biotransformation of 8:8 PFPiA was more active than 6:6 PFPiA. It was worth noting that perfluorohexanonate and perfluorooctanoic acids were identified in fish as metabolites after long-term exposure to PFPiAs for the first time.


Assuntos
Carpas , Poluentes Químicos da Água , Animais , Biotransformação , Simulação de Acoplamento Molecular , Ácidos Fosfínicos , Distribuição Tecidual
13.
Environ Sci Technol ; 54(1): 345-354, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31774655

RESUMO

This study provides the first in vivo pharmacokinetic data for chlorinated perfluorooctanesulfonate (Cl-PFOS), 6:2 and 8:2 chlorinated polyfluoroalkyl ether sulfonates (Cl-PFESAs), upon a 30 day dietary exposure and 34 day depuration phase in rainbow trout (Oncorhynchus mykiss). Biological handling of these three novel molecules and legacy PFOS were investigated via cross-comparison. PFOS and Cl-PFOS displayed comparable bioaccumulative potencies and similar distribution tendencies in tissues (blood > liver > kidneys), despite the presence of a terminal chlorine atom in Cl-PFOS molecule. The Cl-PFESAs, especially 8:2 Cl-PFESA, were predominantly assimilated from the bloodstream by liver and kidneys and resisted elimination, leading to higher bioaccumulation factors in liver than in blood (0.576 and 0.254, respectively, for 8:2 Cl-PFESA) and longer half-lives in liver and kidneys than PFOS, suggesting these alternatives may pose greater risks in terms of the great accumulation potentials in fish tissues. The present study provides the first report of the in vivo transformation of 6:2 and 8:2 Cl-PFESAs and identifies 6:2 and 8:2 H-PFESAs as their respective sole metabolites. This provides the first line of evidence suggesting that the transformation susceptibility of Cl-PFESAs in organisms is distinct from their environmental persistence.


Assuntos
Fluorocarbonos , Oncorhynchus mykiss , Alcanossulfonatos , Animais , Biotransformação , Éter , Éteres
14.
Environ Int ; 133(Pt B): 105262, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31665679

RESUMO

Hepatotoxicity in zebrafish (Danio rerio) larvae elicited by legacy perfluorooctane sulfonate (PFOS) and its three novel chlorinated alternatives, including chlorinated polyfluorooctane sulfonate (Cl-PFOS) and chlorinated polyfluoroalkyl ether sulfonates (6:2 and 8:2 Cl-PFESA analogs), was evaluated in this study. Upon 7-day separate exposure to the four target compounds at 1 µmol/L, significant hepatic steatosis in exposed larvae was evidenced by pathological micro/macro vacuolation, which was presumably attributed to the excess accumulation of lipid, especially the overloaded triglyceride (TG) level. Disruption on gene transcription was subjected to a structure-dependent manner. In general, PFOS, Cl-PFOS and 6:2 Cl-PFESA of the identical carbon chain length (i.e. C8), despite with different substituents, displayed a similar activation mode and comparable disruptive potency on lipid metabolism responsive genes, which particularly promoted fatty acid synthesis (acetyl-CoA carboxylase, acacb) and ß-oxidation (cytochrome P450 enzymes-1A, cyp1a; peroxisomal acyl-CoA oxidase 1, acox1; and acyl-CoA dehy-drogenase, acadm). However, 8:2 Cl-PFESA with a prolonged carbon chain length (i.e. C10), preferentially disturbed fatty acid exportation (apolipoprotein-B100, apob) and triggered a different modulation pattern on fatty acid ß-oxidation against the other three compounds. Molecular docking analysis indicated that 8:2 Cl-PFESA exhibited considerably higher peroxisome proliferator-activated receptors (PPARs) antagonism than others, corresponding to its unique suppression effect on fatty acid ß-oxidation responsive genes. To our knowledge, this is the first in vivo study reporting hepatotoxicity of Cl-PFOS and Cl-PFESAs to aquatic organisms. Although characterized with different toxic mode-of-action, these novel alternatives can elicit hepatic steatosis as strong as PFOS, stressing the biological risks in view of their global contamination.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Fígado/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Ácidos Alcanossulfônicos/química , Animais , Fluorocarbonos/química , Larva/efeitos dos fármacos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Poluentes Químicos da Água/química
15.
Sci Total Environ ; 695: 133907, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31425999

RESUMO

Polyfluoroalkyl phosphate esters (PAPs) are one kind of emerging polyfluoroalkyl substances in the environment. However, their in vivo toxicities are largely unknown, especially at environmental relevant concentrations. To fill this gap, zebrafish embryos were exposed to 6:2 or 8:2 diPAP at environmentally relevant concentrations (0.5, 5, 50 ng/L) for 7 d. 6:2 and 8:2 diPAPs upregulated the mRNA and protein levels of aromatase in the exposed larvae, and elevated estradiol (E2) and vitellogenin (VTG) levels, but reduced testosterone (T) and 11-ketotestosterone (11-KT) levels, demonstrating estrogenic and antiandrogenic effects. Among the three ER subtypes, ERß2 displayed the highest in vivo mRNA expression and the lowest in silico binding energies, suggesting that it was the main target ER subtype responsible for the estrogenic effect. Molecular simulation results indicated that diPAPs and E2 could bind to one common residue, arginine (Arg) 87, in the binding pocket of ERß2, inducing similar estrogenic disruption mechanisms as E2. Both compounds could form hydrophobic interaction with glutamic acid (Glu) 12 and tryptophan (Trp) 80 and two hydrogen bonds with Arg81 of androgen receptor (AR) ligand-binding domains (LBDs) in antagonistic mode, resulting in a reduced level of AR upon exposure. The in silico binding energies of 6:2 diPAP with both ER and AR were lower than 8:2 diPAP, explaining the observed greater in vivo estrogenic and antiandrogenic activities of 6:2 diPAP. This study provided the first line of evidences that diPAPs could display adverse effects on the endocrine functions of fish species.


Assuntos
Estrogênios/toxicidade , Organofosfatos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Testes de Toxicidade , Peixe-Zebra/fisiologia
16.
Sci Total Environ ; 676: 290-297, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31048160

RESUMO

Perfluoroalkyl phosphinic acids (PFPiAs, including 6:6, 6:8 and 8:8 PFPiAs) are one kind of emerging perfluoroalkyl substances and usually used as leveling and wetting agents in household cleaning products and pesticide formulations. In this study, zebrafish embryos (6 h post-fertilization [hpf]) were exposed to 6:6, 6:8 and 8:8 PFPiAs individually (0.5, 5 and 50 nM) for 168 hpf. 8:8 PFPiA at 5 and 50 nM reduced the body length, while all treatments of 6:8 and 8:8 PFPiA depressed the heartbeat of the zebrafish larvae. 8:8 PFPiA at 50 nM distinctly enhanced the thyroxine (T4) and triiodothyronine (T3) contents. In a negative feedback mechanism, the three PFPiAs remarkably suppressed the genes responsible for THs regulation (corticotropin-releasing hormone, crh; thyroid stimulating hormone, tshß), and 8:8 PFPiA displayed the strongest effect. In addition, 8:8 PFPiA significantly promoted the gene expressions corresponding to THs transport, metabolism and action (transthyretin, ttr; uridine diphosphate glucuronosyltransferase, ugt1ab; deiodinases, dio1 and dio2; thyroid hormone receptors, trα and trß). As a result, 8:8 PFPiA displayed the strongest thyroid endocrine disrupting effect and significantly affected the growth of zebrafish larvae among the three PFPiAs in the present study.


Assuntos
Disruptores Endócrinos/toxicidade , Ácidos Fosfínicos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Tireotropina/metabolismo , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo , Peixe-Zebra
17.
Water Res ; 122: 78-85, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28595123

RESUMO

Large volume production and application of nano-TiO2 make it inevitably release to natural waters and its environmental behaviors would be affected by natural organic matters. In this study, the mechanisms of humic acid (HA) affecting the photocatalytic performance of nano-TiO2 were elucidated by using three HA fractions from the same source but with different polarities. Bulk HA was fractionated on a silica gel column to get three fractions with polarity increasing in the order of FA, FB and FC. FA was fulvic acid-like while FB and FC were humic acid-like. All the three fractions (at 0.1 mg/L) promoted the generation of hydroxyl radicals (OHs) by nano-TiO2, and thus in turn facilitated the photocatalytic degradation of bispheol A (BPA). FA and FC displayed a stronger promotion effect than FB and the bulk HA. Online in situ flow cell ATR-FTIR and XPS analyses indicated that HA fractions could form charge-transfer complex with nano-TiO2 surface through the phenolic hydroxyl and carboxylic groups, which favored the separation of photogenerated electron-hole pairs. Through step methylation experiments, it was verified that the phenolic hydroxyl and carboxylic groups of HA fractions played important roles in promoting the photocatalytic performance of nano-TiO2, and the effect of carboxylic group was more significant than the phenolic hydroxyl group.


Assuntos
Substâncias Húmicas , Titânio , Adsorção , Meio Ambiente , Nanopartículas , Fotoquímica
18.
Sci Total Environ ; 598: 814-820, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28458198

RESUMO

Due to regulations on bisphenol A (BPA) in many countries, a variety of bisphenol analogues are being widely manufactured and applied. However, there is a big knowledge gap on bioaccumulation and biomagnification of these emerging bisphenols in aquatic organisms. The bioaccumulation and magnification of nine bisphenol analogues in aquatic organisms at different trophic levels collected from Taihu Lake, China, were evaluated. The total concentrations of the nine bisphenols in the lake waters were in the range of 49.7-3480ng/L (mean, 389ng/L). BPA, bisphenol AF (BPAF) and bisphenol S (BPS) were the most predominant analogues in the water. The mean natural logarithm bioaccumulation factor (log BAFs) of BPAF, bisphenol C (BPC), bisphenol Z (BPZ) and bisphenol E (BPE) were greater than BPA, and there was a significantly positive correlation between log BAFs of the biphenols and their octanol-water partition coefficients (log Kow). The trophic magnification factors of BPAF, BPC and BPZ were 2.52, 2.69 and 1.71, respectively, suggesting that they had the potential to biomagnify in the food web. The results of this study call for further investigations on risk assessment of these emerging pollutants in the environment.


Assuntos
Organismos Aquáticos/química , Compostos Benzidrílicos/farmacocinética , Cadeia Alimentar , Fenóis/farmacocinética , Poluentes Químicos da Água/farmacocinética , Animais , Artrópodes/química , China , Peixes , Lagos , Fitoplâncton/química , Caramujos/química , Zooplâncton/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...